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ABSTRACT

In many signal processing applications such as in underwater acoustic array beamforming,
the need arises to implement digital phase shifters. Conventional methods of implementa-
tion make use of digital interpolation and decimation to derive FIR(Finite-duration Impulse
Response) realizations. Such filters, however, are capable of providing delays that are only
rational fractions of the unit delay. To obtain delays that are arbitrary factors of the unit
delay, two novel methods are presented: the first method makes use of a windowing technique
and the second method makes use of a frequency-sampling approach. In both methods the
constraint of exactly linear phase is relaxed and the departures from linear phase are kept very
small. To ensure that the new phase shifters attain a high level of performance, comprehen-
sive error measures have been developed and applied; these performance measures consist of a
normalized rms error, the phase delay error and the group delay error. Moreover, these error
measures are applicable to any method of designing digital phase shifters. In addition, for the
frequency-sampling designs, the concept of an effective filter length is introduced; this concept
takes into account the wraparound error that arises in fast-convolution signal processing oper-
ations. Aside from the presentation of the design procedures and error measures, examples are
included to illustrate the salient features of the two new methods.
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RtSUM±

Dans de nombreuses applications du traitement des signaux telles quo la formation des fais-
ceaux dans un reseau acoustique sous-marin, ii faut introduire des d6phaseurs numiriques. Lee
mithodes classiques consistent i procider i une interpolation et & une d6cimation numhriques
pour obtenir une r6sponse i une impulsion de dur~e finie (RIF). Cette filtration ne permet
toutefois do produire que des retards qui sont des fractions rationnelles du retard unit6. Pour
obtenir des retards qui sont des fractions arbitraires du retard unit6, on propose deux nou-
velles m~thodes: la premi~re fait appel i une technique de fenitrage, et la deuxiirme, i un
6chantillonnage des fr6quences. Dans les deux m6thodes, la contrainte de lin6airit6 parfaite
des phases est lev6e et les 6carts de lin~airit6 sont maintenus i des valeurs trim faibles. Pour
s 'assurer quo les nouveaux d~phaseurs soient tr~s efficaces, on a mis au point et appliqu6 un
systime sophistiqu6 de mesure des erreurs; ces mesuros de performance portent sur une erreur
efficace normalis6e , Ferreur do d~phasage et l'erreur de retard de groupe. En outre, ces mesures
d'erreur soot applicables iL toute m6thode de conception do d~phaseurs numhriques. Do plus,
dans la m~thode do I 'chantillonnage des fr~quences, on introduit le concept do plage efficace
de filtrage pour tenir compte do l'erreur do renouement qui d6coule du traitement des aignaux
i convolution rapide. En compliment do la pr~sentation des proc~dures do conception et des
mesures, des erreurs, des exomples viennent illustror lee caract6ristiques particulikres des dowc
nouvelles m6thodes.
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1 Introduction

In many signal processing applications, the need arises to implement digital phae shifters
that delay a signal in time by specified values. For example, in real-time digital array beam-
forming, the number of sample-and-hold amplifiers may be much less than the number of data
channels to be sampled. As a result, sets of time delays are required to correct for the differences
in sampling instants within a group of channels processed by a single sample-and-hold amplifier.
Also, time delays are required to compensate for the acoustic propagation delays experienced
by the signals arriving from non-broadside directions at the various sensors [1]. To correct
for the deskewing in time for differences in sampling times within a group of data channels,
time-domain implementations of digital phase ahifters are appropriate. To compensate for the
acoustic propagation delays, frequency-sampling designs of digital phase shifters are required
for array beamforming in the frequency domain. In addition, to reduce the beamforming er-
rors arising from the time delays and to minimize the computational load in the beamforming
operation, the time delays must be made as accurately as possible and the impulse response
lengths of the phase shifters must be kept as small as possible. When the required time delays
are integer multiples of the time sampling interval (called the unit delay), the realization of the
phase shifters is trivial. When the required time delays are non-integer multiples of the unit
delay, the realization is more difficult.

One method of solving the realization problem is related directly to the digital method of
interpolation. In this context, Schafer and Rabiner used a frequency-domain interpretation to
show that interpolation is fundamentally a linear filtering process [2]. Moreover, they exam-
ined the relative merits of FIR (Finite-duration Impulse Response) and R (Infinite-duration
Impulse Response) digital filters and concluded that FIR filters are preferable for interpolation.
Also, they argued that linear-phase FIR filters have many attractive features and indicated how
such filters may be realized to give delays that are rational fractions of the unit delay - that is,
delays of m/n units where m and n are integers. Their ideal interpolation scheme requires the
creation of a sequence of n - 1 zero-valued samples between each sample of the original digital
sequence and the filtering of this zero-padded sequence with an ideal lowpass filter. By delaying
the output of the lowpass filter by m units at the increased sampling rate and decimating the
resulting sequence by the factor n, a fixed delay of m/n units at the original sampling rate is
obtained. Furthermore, the entire procedure of obtaining m/n units of delay can be realized
without sampling rate increases (for interpolation) and sampling rate decreases (for decima-
tion) [2,3]. Pridham and Mucci used the above scheme to realize their digital interpolation
beamformer, which left the channel sampling rate unaltered but introduced quantization errors
in the time delays with a modest increase in the computational load [4,5]. To attain sufficient
accuracy for beam steering, the quantization errors in the time delays must be kept low and to
reduce the computational load, the lengths of the impulse responses of the digital filters must
be kept small. Therefore, in the above application as well as in many others, it is important
to have methods of realizing arbitrary values of time delay precisely with digital filters having
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small impulse response lengths.

For non-integer factors of the time delay, neither an FIR or an IIR filter can achieve the
ideal phase shifter characteristics. The FIR filter (having all zeros) cannot produce the exact
all-pass amplitude response, whereas the IIR filter (having both poles and zeros) cannot give
the exact linear phase response. As a result, any required delay can only be approximated
through some design procedure. For rational values of time delay, Schafer and Rabiner [2],
Crochiere and Rabiner 161 and Bellanger et al. [71 have developed effective implementations of
single-stage and multi-stage FIR sections. For arbitrary values of time delay, however, only
Sudhakar, Agarwal and Dutta Roy [8] have presented a method based on an interpolation
procedure using a Taylor series expansion around the sample value nearest the required delay.
Their method represents an adequate alternative to the multi-stage lowpass filtering scheme
of Crochiere and Rabiner. However, their approximation requires derivatives up to the second

order which leads to further approximation problems.

In all of the above methods to realize an arbitrary value of time delay, the FIR filters are
constrained to have exactly linear phase. For practical applications, however, this constraint is
unnecessary. Practical requirements normally call for FIR filters having nearly alpass ampli-
tude responses and almost linear phase responses over specified bandwidths. Small deviations
from the ideal responses over the specified bandwidths are acceptable and can be realized
through simple FIR filter design procedures that are logical generalizations of the standard
techniques. In particular, two novel methods of achieving arbitrary values of time delay with
negligible errors are presented in this paper. The first method is similar to the familiar win-
dowing technique and is appropriate for time-domain applications [9,10]. The second method is
similar to the frequency-sampling technique and is appropriate for signal processing operations
carried out in the frequency domain [9]. To ensure that the filters attain a high level of perfor-
mance, comprehensive error measures are introduced and applied: the performance measures
consist of a normalized rms error, the phase delay error and the group delay error. Further,
the concept of an effective filter length for the frequency-sampling designs is introduced to
ensure that the wraparound [11] error arising in fast convolution operations [12] is kept below
an acceptable threshold. Finally, to illustrate the phase shifter designs possible by the two new
methods, examples are included to show the small departures from the ideal responses, the
extent of the errors incurred and the achievable bandwidths.

2 .--'.. .
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2 Windowing Technique

2.1 The Window Method

Since the frequency response H(e.wT) of any digital filter is periodic in frequency with
period f,, the sampling frequency, it can be expanded in a Fourier series thus:

H(ewr)= h(n) eamT  (2.1)
n---00

where

H(ei ' T) = frequency response of the digital filter,
h(n) = coefficients of the Fourier series expansion,

- impulse response coefficients of the digital filter,
w = radian frequency, and
T = time sampling period,

- 1/f.,reciprocal of the sampling rate.

Also, the impulse response coefficients h(n) are given by

T J rT
h(n) = T H(wT)ei&IlmTdw for n = 0, -1, ±2,.... (2.2)

The representation in Equation 2.1, however, has two major drawbacks. First, the length of the
impulse response h(n) is infinite. Second, the filter is unrealizable because no finite amount of
delay can compensate for the infinite length of the impulse response. Hence the filter resulting
from Equation 2.1 is an unrealizable HR (Infinite-duration Impulse Response) filter.

To approximate a desired frequency response Hd(eJiwT) by means of an FIR (Finite-
duration Impulse Response) filter, the simplest method consists of truncating the series in
Equation 2.1. Such truncation, however, leads to the familiar but unacceptable Gibbs' phe-
nomenon: large ripples in the frequency response occur at the bandedges and exceed the desired
height at the bandedges by about 9%. Increasing the length of the impulse response - by keep-
ing more terms in the Fourier series expansion - merely decreases the transition widths at the
bandedges where the Gibbs' phenomenon remains unaltered but confined to a smaller frequency
range.

A successful FIR filter can be produced by applying the windowing technique 19] as follows:

1. The impulse response coefficients hd(n) corresponding to the desired frequency response
Hd(e j T) are first determined. In most cases of practical interest, closed form expressions
for hd(n) are obtainable from Equation 2.2.

3
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2. A suitable window (weighting) function w(n) of finite duration is chosen to control the
convergence of the Fourier series. In a sense, the window function determines how much
of the impulse response hd(n) we can see so that the term window is descriptive and
appropriate.

3. Next, the window function is placed over the center of the impulse hI(n) to produce the
modified sequence

h(ft) = h ,) w(n) (2.3)

of finite length.

4. If the finite-length impulse response h(n) in Equation 2.3 contains negative indices (that
is, negative values of n), the resulting filter is non-causal. To get a realizable FIR filter,
the sequence h(n) is shifted to the right until the leftmost index becomes non-negative.

The frequency domain interpretation of the windowing procedure is straightforward. If
H d(ejT) and W(ej-T) are respectively the frequency responses of hd(n) and w(n), then the
windowing operation corresponds to the convolution of Hj(ewT) with W(eSwT) in the frequency
domain.

In the literature, the windowing procedure has been applied to the design of lowpass,
bandpass and highpass FIR digital filters with the conventional linear phase constraint [9,10]. In
this case, the desired amplitude response is unity over the passbands and zero in the stopbands.
Also, the choice of the window function w(n) is governed by two factors: first, w(n) must be
kept as short as possible to minimize the computational load in the unplementation of the
filter; second, w(n) must be chosen to keep the transition width at tke bandedges as narrow as
possible and the levels of the ripples in the passband and stopband as low as possible. For a
fixed length of the impulse h(n), the requirements of narrow transition widths and low ripple
levels are conflicting. As a result, tradeoffs are made among transition width, ui.aximum ripple
level in the passband, maximum sidelobe level and the decay of the envelope of the sidelobes.

In the design of digital phase shifters, the desired amplitude response is unity and the
desired phase response is linear over the frequency band of interest. As above, the length of
the window function must be kept as short as possible to minimize the computational load;
and the window function must be chosen to keep the deviations in the amplitude and phase
responses relative to the desired ones as small as possible. Also, for a fixed length of the impulse
response, the requirement of small deviations from the desired amplitude and phase responses
over specified bandwidths turns out to be conflicting with that of narrow transition widths. As
a result, tradeoffs will be required among the following three factors: the deviations from unit
amplitude, the deviations from linear phase and the useable bandwidth which is linked to the
transition width.

4
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2.2 Design Equations for Arbitrary Delays

The frequency response of the desired (ideal) phase shifter is given by

Hd(eWT) -{ e-  for - w,<w <c (2.4)H ('7" = 0 otherwise,

where r is the required time delay. The desired phase shifter delays all frequency components
in the band -w, _< w < w, by r seconds and rejects all frequencies outside of this band. For
full band operation w, is equal to one half of the radian sampling frequency.

From Equation 2.2, the corresponding impulse response is

"n sin[2;rF,(n - d)] for -o < n < o (2.5)
hd(l)-) = (n -d)

where
F, = f/T = f/lf, = normalized cutoff frequency,

d = r/T = normalized time delay.

Like the standard FIR designs, the impulse response in Equation 2.5 must be windowed and
shifted to obtain a causal filter of finite length. Also, like the standard FIR designs, the impulse
response in Equation 2.5 is symmetric whenever d is an integer or an integer±0.5 . However,
unlike the standard FIR designs, the impulse response is asymmetric for other values of d.
Therefore the resulting windowed impulse response h(n) will not in general obey the symmetry
or anti-symmetry property

h(n)=±h(N-1-n) for0 5n_<N-1 (2.6)

where N denotes the length of the impulse response which is also referred to as the filter length.
This means that, in general, the phase response will not be exactly linear.

Windowing the desired impulse response hd(n) by the weighting function w(n) produces
noteworthy effects on the resulting frequency response. First, discontinuities in Hd(eiWT) be-
come transition bands in the resulting frequency response H(eywT). Since H(ejwT) is the circular
convolution of Hd1(e j wT) with the window's frequency response W(eiwT), the width of the tran-
sition bands depends on the width of the main lobe of W(eOwT). Second, the ripples in the
sidelobes of W(e j hT) produce ripples in the realizable frequency response H(eiT). Finally, the
resulting filters are never optimal in any sense though some of the windows used in the filter
design may satisfy some optimality criterion. Nevertheless, the windowing technique produces
acceptable practical designs with a minimum of effort.

Complete listings of window functions can be found in the literature, particularly in Harris'
paper 113]. Only the following three windows will be considered here because they will illustrate
the salient features that lead to acceptable designs. The simplest window, illustrated in the
top left and right boxes of Figure 2.1,is the rectangular one defined by

I { 1 for N 1 <n-d5N-I
owin)  2 - n- 2 (2.7)

. 0 otherwise,

-
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Figure 2.1: Data windows and their frequency responses: rectangular window in top two boxes;
Hamming window in middle two boxes; and Kaiser window in bottom two boxes.
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where n ranges from -oo to oo. This means that the window is centered as symmetrically as
possible about the middle of the window envelope - or about the peak of the envelope as in the
following two windows. The rectangular window merely truncates the ideal impulse hd(n) and
the rorresponding frequency response exhibits the familiar Gibbs' phenomenon associated with
the .runcation of the Fourier series. Its frequency response W (eiIT) has the smallest main lobe
width of all possible windows and therefore gives the smallest transition width in digital filter
designs. However, its high sidelobes produce a frequency response with a maximum stopband
level (S say) of -21 dB and slowly decaying sidelobes (6 dB per octave) that are unacceptable
in most applications.

By tapering the window w(n) at each end, the height of the sidelobes can be reduced
substantially at the expense of a wider main lobe in the frequency response of the window and
thus a wider transition width in the frequency response of the digital filter. A classical example
of such a window is the Hamming window illustrated in the two middle boxes of Figure 2.1 and
defined by

02(n-d) _N- N-1
w {n)  N- f 2 d (2.8)

0 otherwise.

The lower sidelobes of W(eiWT) for this window give filter designs with a maximum stopband
level of -53 dB and with sidelobes that decay very slowly.

To obtain tradeoffs between the transition width AF of the digital filter and its maximum
stopband level S, the flexible family of windows proposed by Kaiser is recommended [10]:
namely

Sw~n)- IO{ [_/-{f2(n-d)(N-)}2]fo N- N-II: /o~a) for-2-< n" -d< -
2O Fa 2 2 (2.9)

0 otherwise,

where
Io(x) = modified Bessel function of the Ist kind

of order 0 and argument z, and
a = parameter that specifies the tradeoff between the

transition width and the maximum stopband level.

The two boxes at the bottom of Figure 2.1 show the shape of this window for a = 5.658
and its corresponding frequency response. For this value of a, the Kaiser window tapers off
toward zero much more rapidly than either the rectangular or Hamming. Mathematically, of all
bandlimited functions, the zero order prolate spheroidal window function provides the greatest
concentration of energy in the passband and is optimum in the sense of having the maximum
energy in the main lobe of W(eikIT) for a given peak sidelobe level. To circumvent the difficulty
of computing the prolate spheroidal function, Kaiser introduced the approxi nation using the
I0 function. This window with the adjustable parameter a gives the designer the flexibility to
produce quick and effective FIR digital filters for signal processing applications.

7
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For the design of digital phase shifters - and of similar digital filters - empirical values
can be determined for the specifications of the following quantities:

AF = Af/f, = normalized transition width
S(n dB) - maximum stopband ripple height
P(in dB) = maximum passband ripple height.

The transition width satisfies an equation of the form

AF P C(N - 1) (2.10)

where C is a constant depending only on the shape of the window: that is, the normalized
transition width AF is approximately inversely proportional to the window length N. Also, as
mentioned earlier, the sidelobes of W(e jwT) control the height of the ripples in the passband
and stopband. Moreover, in the case of the window method, the maximum ripple height S.
in the passband is equal to that in the stopband. Therefore the maximum passband ripple
height in dB is given by

P(in dB) = - 20 log10 (1 + 4n.) (2.11)

and the maximum stopband ripple height in dB by

S(in dB) = 20 log1 06.. (2.12)

Table 2.1 gives the design data, derived empirically, for the amplitude characteristics of
digital phase shifters based on the window method. It shows the inter-relationships among AF
(the normalized transition width), S (the maximum stopband ripple height in dB) and P (the
maximum passband ripple height in dB) for the various windows. In particular, the flexibility
of the Kaiser window with its adjustable a parameter is quite evident: as a increases from
2.210 to 8.960 the maximum stopband ripple height decreases from -30 dB to -90 dB and
the maximum passband ripple height decreases from 0.27 dB to 0.00027 dB as the normalized
transition width increases from 1.54/(N - 1) to 5.71/(N - 1).

2.3 Error Measures and Design Data

To evaluate the performance of digital phase shifters, two types of errors should be con-
sidered. The first type is the mean-squared error of the phase shifter output relative to the
ideal output at any instant over the useful passband for a wide-sense stationary input. This
error, normalized by the mean-squared value of the input, gives a suitable measure of statistical
performance. The second type of error is the time delay error. For this type, the error in the
delay associated with a single frequency component defines the phase delay error, whereas the
error in the delay associated with a small (infinitesimal) band of frequency components defines
the group delay error. Though expressions for the above types of errors can be derived, the
values of the errors have to be determined empirically to facilitate the design of the digital
phase shifters.

8



Table 2.1: Design Data for Amplitude Response using the Window Method

Normalized maximum maximum
Data Transition Stopband Paasband

Window Width Ripple Height Ripple Height
S S(in dB) (in dB)

Rectangular 1.21/(N - 1) -21 -0.74

Hamming 3.45/(N - 1) -53 :0.019

Kaiser

a value

2.210 1.54/(N - 1) -30 -0.27

3.384 2.23/(N - 1) -40 *0.086

4.538 2.93/(N - 1) -50 *0.027

5.658 3.62/(N - 1) -60 ±0.008T

6.764 4.32/(N - 1) -70 ±0.0027

7.865 5.02/(N - 1) -80 *0.00087

8.960 5.71/(N - 1) -90 ±0.00027

i9
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In Appendix A, an upper bound on the normalized rms error c, is derived: namely,

<r 162. + le _ 2 1/
ma+ - 9dlLJ (2.13)

where
6m. = maximum deviation (ripple height) in the

amplitude of the frequency responseH(eiwT),
I0 - Odlr.x = maximum deviation in the phase of the

frequency response,
. = argHWIw),
Od = (uT,

and where these deviations are within the passband of the phase shifter. The upper bound in
(2.13) is based on the premise that, in acceptable designs of digital phase shifters, both the
amplitude and phase deviations from the desired (ideal) designs are small relative to unity.

The time delay errors, however, are related directly to the phase deviations 9 - Od. In fact,
the phase delay error normalized by the unit delay T is defined by

Arp = wr (2.14)

wT'

whereas the group delay error also normalized by the unit delay T is defined by

Aig 1 d(I - cr) (2.15)r=T dw

The quantities Arp and Ar. give direct measures of the errors in the time delay provided by
the digital phase shifter and can b6 rvaluated numerically. In both Equations 2.14 and 2.15,
0 denotes the unwrapped phase of H(ejwT): that is, it refers to the continuous phase function
obtained by removing the discontinuities encountered in numerical evaluation of 6 by the arctan
function. The method of phase unwrapping used in this paper makes use of a median filtering
technique [14]. Also, to facilitate the evaluation of the phase functions and errors as well as
the detailed characteristics of the phase shifters, Appendix B presents proper DFT (Discrete
Fourier Transform) interpolation techniques for the purpose.

Table 2.2 gives empirical bounds on the errors c,., Arp and Ars for the digital phase
shifters designed by the window method. In this case the passband is equal to about 80% of
the full bandwidth. An examination of Table 2.2 reveals the following salient features:

1. For designs in which the maximum stopband ripple height S in large (for example, the
rectangular window and Kaiser window with a = 2.210, as indicated in Table 2.1), the
rms and phase errors are unacceptable.

2. Once the maximum stopband ripple height falls below about -42 dB (such as in the
Hamming window and Kaiser window with a _> 3.5), the rms and phase errors become
acceptable.

3. In the er. bound, the amplitude deviations 6.. in Equation 2.13 turned out to be the
--dominant component. In fact, for the designs using the Kaiser window, 6.. accounted

for about 70% of rm.0

',-.
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Table 2.2: Error Measures for Designs using the Window Method

Upper Bound maximum maximum
Data on Normalized Normalized Normalized

Window rms Error Phase Delay Error Group Delay Error
euArp(%) Arg(%)

Rectangular 0.090 19 34

Hamin 0.0035 2.0 4.0

Kaiser

a value

2.210 0.034 11 22

3.384 0.011 3.5 7.0

4.538 0.0034 1.1 2.2

5.658 0.0011 0.47 0.95

6.764 0.00034 0.15 0.30

7.865 0.00011 0.047 0.095

8.980 0.000034 0.015 0.030

NOTE: Above data apply to digital phase shifter.
designed by the window method and having a

pasaband equal to 80% of the full band.



4. For time delay performance, the group delay error Arg rather than the phase deviations
19 - 94 turns out to be the most sensitive measure. As will be seen in the sample designs
to be presented below, the group delay error may be unacceptable even though the phase
deviations are small.

2.4 Examples

Figures 2.2-2.8 illustrate the characteristics of the digital phase shifters designed by the
windowing technique. In each of these figures, the top two boxes show the impulse and frequency
responses. In the impulse response diagrams (top left-hand-boxes), the sample number is actu-
ally non-negative; however, the impulse response is wrapped around the zero sample number to
show the shape relative to the ideal response hd(n) in Equation 2.5. In the frequency response
diagrams (top right-hand-boxes), both the amplitude and the unwrapped phase are shown; the
amplitude is displayed on a dB scale and the unwrapped phase on a radian scale. The two
adjoining boxes at the bottom left-hand side show the amplitude deviations (20 log1 0 (1 + 6))
and the phase deviations (9 - Od in degrees) relative to the desired (ideal) phase shifter. As
indicated in Equation 2.13, the amplitude and phase deviations both contribute to the normal-
ized rms error c.. Finally, the two adjoining boxes at the bottom right-hand side give the
phase and group delay errors as defined in Equations 2.14 and 2.15 but on a percentage scale.

The salient features enumerated at the end of the last subsection will now be examined in
greater detail. Figure 2.2 shows the unacceptably large errors for the phase shifter using the
rectangular window. The errors here are smaller than those in Table 2.2 for two reasons: first,
the passband is about 70% instead of 80% of the full bandwidth; and second, the normalized
delay d is close to but not exactly equal to an integer-0.25 for which the impulse response has
the greatest asymmetry and gives the largest phase errors.

By depressing the stopband attenuation below -40 dB, as in Figures 2.3 to 2.7 inclusively,
the errors decrease dramatically by at least an order of magnitude. In Figure 2.3, the Hamming
window is used, the filter length N is 31, the normalized delay d is 0.79 and the normalized
cutoff frequency F, is 0.35 (that is, 70% of the full band). In Figures 2.4 to 2.7, however, the
filter length, normalized delay and design bandwidth are unchanged but the Kaiser window
with its adjustable a parameter is used instead. In Figure 2.4, the value of a = 4.538 gives
a maximum passband ripple height of 0.027 dB, a normalized transition width of 0.097, a
maximum stopband ripple height of -50 dB, an rms error of about 0.006, a maximum phase
delay error of 0.3% and a maximum group delay error of 0.6%. In Figure 2.5 the value of a is
increased to 5.658 which reduces the maximum stopband ripple height to -60 dB as well as the
rms and delay errors but at the expense of a wider transition width of about 0.121. However,
as the filter length is decreased from 31 in Figure 2.5 to 21 in Figure 2.6 without changing
the values of a, d andF., the errors increase but remain within acceptable limits for practical
applications.

In addition, the passband can be increased and the errors kept reasonably small by main-
taining an attenuation of at least 40 dB at the edge of the full band. Figure 2.7 illustrates
this point: the a value, filter length and time delay are identical to those in Figure 2.6 but the
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useful bandwidth has been extended from 70% to 80% of the full band.

To obtain acceptable designs, the following fact is important: sufficiently large attenuation
(exceeding 40 dB) in the stopband translates into small phase errors (less than 1%) in the
passband. This fact stems from the Hubert transform relationships that link and restrain the
amplitude and phase characteristics [15,16]. Also, any high-frequency attenuation translates
into a linear phase shift at the low frequencies. In other words, without some high-frequency
attenuation a linear phase shift at low frequencies would be impossible. This point is illustrated
in the earlier Figures and again in Figure 2.8 corresponding to a Kaiser window with a = 5.658
for a phase shifter of length 11 with a delay d of 0.79 and the cutoff frequency F pushed to
the upper limit of 0.5. In the last example, the small attenuation at the high frequencies yields
an almost linear phase over the band from 0 to 0.32 but produces serious phase distortions
between 0.32 and 0.5. Such a design may still be useable if the band from 0.32 to 0.5 represents
a "don't care" region that is eliminated in the pre-processing or post-processing operations.
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3 Frequency-Sampling Technique

3.1 The Frequency-Sampling Method

Since a finite-duration sequence has a discrete Fourier transform representation, the im-
pulse response h(n) of an FIR filter can be expressed in terms of its frequency samples H(k)
thus:

N-I
H(k)= E h(n) e-j 2 wh/N (3.1)

0=0

where

H(k) = H(z)Iip(2.k/N)

and z denotes the z-transform variable. Moreover, H(z) may be expressed in terms of the
frequency samples H(k) as [91

1- z-N N-I H(k)
Hz) N k))= N. . 1 - expj2xk/N)z-i (3.2)

k=0O

The substitution of z = exp(jwT) into Equation 3.2 gives the corresponding frequency response:
namely,

N 2wrk
N N I 2k sin 2 __) "

H(WT =~ H(k) exp[-ij~~w -2)] 1 (3.)

'- Equation 3.3 suggests a simple method for the design of digital filters: namely, specify the
'. frequency response only at the frequency samples H(k) over one period (that is, for k =

i 0,... ,N - 1). In this method, the interpolation formula on the right side of Equation 3.3 fills
integaps btenhefrequency samples togive tecomplete frequency response.

For example, in the design of a lowpass FIR filter, the standard choice for the frequency
, samples is of the form

(I for k in the pasband

Jk for k in the transition band (3.4)
H 1) - 0 for k in the stophand

' I. H(N - k -1I) for a symmetric impulse response

where the transition values are real and satisfy the relationship

1 > Vk > v.+ > 0. (3.5)
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The number of transition samples and their values determine the passband ripple heights and
the stopband sidelobe levels in the gaps between the frequency samples. To obtain filters whose
frequency response changes quickly in a small transition band with small deviations from the
ideal response in the passband and stopband, the transition values vk should be chosen by
an optimization algorithm [9,17]. For filters whose frequency response changes less quickly in
the transition band, the vk may be chosen according to some well behaved function such as
a gaussian shape. However, in all designs with real-valued H(k) satisfying Equation 3.4, the
filters are constrained to have a fixed delay of (N - 1)T/2 seconds. An arbitrary delay can be
realized only by relaxing the rigid constraints in Equation 3.4.

3.2 Design Procedures for Arbitrary Delays

To design phase shifters that will delay the frequency components in the band -f. _< f <_ f.
by r seconds, attenuate the signals in and beyond the transition band about f, and have real-
valued impulse responses, the frequency samples must be chosen to be complex-valued and
must satisfy the complex conjugate relationship

H(k) = H'(N-k) for = 0,1,...,N- 1 (3.6)

where the * denotes complex conjugate. More specifically, if ak and Ot denote respectively the
amplitude and phase components of H(k), then the samples H(k) are chosen as follows:

H(k) = at exp(-j0 ) (3.7)

with
I for k = o,,..., - (N, - 1)/21 - I
vk for k = N, - [(N, - 1)/21,..., . + IN/2] (3.8)

a k -- ON-k for k =N - N, - [N,/2],..., N - 1
0 sotherwise

and
2kd/N fork = O, 1,..., (N- 1)/21

901 = Njv-k for k = N - [(N- 1)/21,...,N- 1 (3.9)
otherwise

where
[m] = integer part of the argument m
N. = [(f/lf.)NJ

= sample value corresponding to the cutoff frequencyf.
N, = number of transition values, and
d = riT

= normalized time delay.

Also, the transition values vi satisfy the same relationship as in Equation 3.5.

Equations 3.8 and 3.9 give the amplitude and phase samples at the frequency sampling
points k = 0, 1,..., N - 1. In the gaps between the frequency sampling points, the deviations
from the desired amplitude and linear phase characteristics depend upon the choice of the
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transition values vk, the sample integer N, corresponding to the cutoff frequency f, and the
number of transition values N,. A number of choices for these parameters will be given below
as part of the examples. Furthermore, since the error measures developed earlier in subsection
2.3 are applicable to all phase shifters, the examples using the frequency-sampling technique
will be presented in the same format as those using the windowing technique.

3.3 Examples and Further Error Consideration

In the simplest case where the number of transition values is equal to zero, it can be shown
that the corresponding impulse response is given by

h(n) = N sin[(2N,-)ir(d-n)/N forn=0,1,...,N-1. (3.10)NC. = in[,(d - IN

In this case, the impulse response is symmetric whenever d is an integer or an integer_0.5 but
is asymmetric otherwise. As mentioned earlier, filters with symmetric impulse responses have
exactly linear phase, whereas those with asymmetric impulse responses have deviations from
linear phase in the gaps between the frequency samples. Moreover, whenever d is equal to an
integer±0.25, the deviations will be the greatest. Furthermore, in the simplest case described
by Equation 3.10, the errors will be the worst as illustrated in Figure 3.1. In this example (with
filter length N = 256, normalized delay d = 10.79, normalized cutoff frequency F. = 0.44 and
number of transition values N. = 0), the deviations in amplitude from the all-pass characteristic
are small but for the familiar Gibbs' phenomenon at the bandedge as well as the deviations
from linear phase over the passband. However, the phase delay errors range from about 30%
to 0% and the group delay errors from about 35% to 80%. Though the amplitude and phase
deviations are small, the delay errors are not and make this design unacceptable.

A dramatic decrease occurs in the amplitude and phase deviations as well as in the phase
delay and group delay errors when appropriate transition values wk are used. For the same
filter length (N = 256), delay (d = 10.79) and cutoff frequency (F. = 0.44) as in Figure 3.1 but
with three transition values (namely, v111 = 0.6904, v112 = 0.2039 and V113 = 0.0135), Figure
3.2 shows the dramatic decrease in the amplitude and phase deviations and in the delay errors.
The transition values used here were taken from Table M of the paper by Rabiner et al. [17]
that used an optimization procedure to minimize the amplitude deviations of lowpass filters
designed by the frequency-sampling method. Though these transition values were derived to
minimize only amplitude deviations, they appear to reduce phase errors substantially as well.

Optimization procedures for deriving transition values to minimize amplitude deviations
are normally time consuming. Also, procedures for deriving transition values to minimize
amplitude deviations and group delay errors are far more formidable to formulate and solve.
Therefore, alternate, simple methods of deriving transition values are highly desirable.

One method resorts to the constraint between amplitude and phase when the requirement
of linear phase over the passband is imposed. The literature reveals that the attendant am-
plitude response approximates a gaussian rolloff in the transition region 115,16]. This suggests
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Figure 3.1: Phase shifter design using the frequency-sampling technique: N = 256, d = 10.79,
F, = 0.44 and N, =0 (impulse response as in Equation 3.10).
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Figure 3.2: Phase shifter design using the frequency-sampling technique: N = 256, d = 10.79,
F, = 0.44 and three transition values v111 = 0.6904, ve12 = 0.2039 and V3 = 0.0135.
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that the use of a gaussian taper of the form

exp(-"yi2 ) for i =1,2,...,N, (3.11)

for producing transition values should give reasonable results. For the same phase shifter design
as in the last example (N = 256, d = 10.79 and F, = 0.44) but for the transition values, Figures
3.3 and 3.4 show the excellent results obtainable by using seven transition values (N. = 7)
generated from the gaussian function in 3.11 with -1 = 0.15 and 0.12 respectively.

In addition to reducing the amplitude and phase deviations and the delay errors, the use
of more transition values in the frequency-sampling design gives another advantage: namely,
the more gradual the amplitude rolloff in the transition region, the faster the decay of the
impulse response away from its maximum value. In practical implementations, this faster
decay effectively reduces the filter length. This fact becomes important in applications where
frequency-sampling filters are used in fast convolution operations" 12,161. In such operations,
cyclic convolutions - computed efficiently by the FFT algorithm - yield linear convolutions
through the processing of overlapping data sequences; the two fast convolution procedures used
in practice are referred to as the "overlap-save" and 'overlap-add" methods. To avoid cyclic
errors in both methods ,the amount of overlap (say M) must be at least equal to N - 1 (where
N is the length of the impulse response). When M becomes less than N - 1, 'wraparound'
errors are introduced [11]. In fast convolution operations where the FFT length NPFT is equal
to the length N of the frequency-sampling phase shifter, the overlap M is less than N - I so
that wraparound errors are always present. To keep the wraparound errors small, the length of
the significant (essentially non-zero) portion of the impulse response (referred to as the effective
filter length Nz) should not exceed the amount of overlap M.

A quantitative definition of the effective filter length Nx can be introduced through a
consideration of the size of the wraparound error. In the case of the overlap-save method
of fast convolution where M is leas than N - 1, the average power spectrum of the filtered
output for a stationary random input is contaminated by the wraparound error. This error
corresponds to a type of aliauing that is a generalization of the aliasing produced by decimation.
Quantitatively, the wraparound error is bounded by

-2 _ 2 M I h(i + Idl + IM/21)12  (3.12)

which is related directly to the mean-square error of the N - M - I ta l of h(n) [11]. Thus
the effective filter length N3 can be defined as the smallest value of M (say Mi.) for which

remains below a specified threshold. For example,

NE, 0 = Mm. for which 20 log 10E _< 60 dB. (3.13)

This definition of Nrz keeps the wraparound error below a negligible level and will be used to
determine the effective length of the frequency-sampling phase shifters.

For the designs in Figures 3.1, 3.2, 3.3 and 3.4, the values of Nz,a0 are 256, 138, 90 and
79, respectively. In particular signal-processing applications such as frequency-domain digital
beamforming [18], much smaller values of Nc,so are required to reduce the computational load
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Figure 3.4: Phase shifter design using the frequency-sampling technique: N = 256, d 10.79,
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significantly. To design phase shifters with smaller NE,60 values, snoother amplitude rolloffs
similar to that in Figure 2.7 must be used. In fact, the transition veues vk in Equation 3.8
defining the amplitude samples of the phase shifter can be chosen from the interpolated mag-
nitude of the frequency response of the windowed impulse response generated from Equations
2.3 and 2.5.

Figures 3.5 and 3.6 are examples of designs with effective lengths NP,s0 of 21 and 11
respectively. These designs with very small Nz,sO values were obtained by using amplitude
samples ah generated as follows:

1 for k = O,1,...,(N/4)- 1

Vk for k = (N/4),..., (N/2) - I where vk is now the
magnitude of the N-point FFT of the impulse in Eq.2.5

ak with d = 0.25 and weighted by the Kaiser window in Eq.2.9 (3.14)
having length L < N and adjustable parameter y
(with zero padding before taking FFT)

aN-k otherwise.

In the case of Figure 3.5, N = 256, F = 0.44 and the Kaiser window is of length L - 36 with
-y = 6; in Figure 3.6, N = 256, F, = 0.39 and the Kaiser window is of length L = 18 with
-y = 5.7. Other methods of generating the transition values vk in Equation 3.14 are possible.
For example, a gaussian taper could be used but would give a more or less linear rolloff on the
logarLthmic amplitude scale. However, the gradually increasing rolloff produced by the Kaiser
window gives phase shifters with smaller effective lengths.
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4 Summary

By relaxing the constraint of exactly linear phase, two novel methods of realizing digi-
tal phase shifters have been developed. Essentially, both methods are generalizations of the
windowing and frequency-sampling techniques. More importantly, without the requirement of
changes in the sampling rate, both methods are capable of giving arbitrary values of time delay
with excellent precision. To evaluate the performance of the phase shifters, comprehensive er-
ror measures have been introduced: the performance measures include a normalized rms (root
mean square) error, the phase delay error and the group delay. In addition, the concept of
an effective filter length for frequency-sampling phase shifters has been introduced to keep the
wraparound error arising in fast-convolution operations below acceptable thresholds.

The above methods of digital phase shifting to achieve arbitrary values of time delay as
well as the set of error measures to evaluate filter performance are useful in a number of signal
processing applications. For example, in real-time array beamforming for acoustic sensors, the
time-domain phase shifter realizations are applicable to deskewing of time differences within
a group of data channels sampled by a single sample-and-hold amplifier; and the frequency-
sampling phase shifters are most appropriate in compensating for the acoustic propagation
delays of signals arriving at the various sensors when beamsteering is carried out in the frequency
domain. For applications such as the above, the novel and simple methods of digital phase
shifting introduced in this paper are capable of producing precise time delays.
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Appendix A Normalized RMS Error

Figure A.1 shows the system used to derive a k,tatistical measure of the error of the output
of the digital phase shifter. The sequence {yd(n)l denotes the output of the desired (ideal)
phase shifter hd(n) with frequency response

Hd(ej") = exp[-ied(j'T)I (A. I)

where, from Equation 2.4,

Ideal Phase Shifter

{zdn)}

{xC,,)){y,,} ( -) {y(,') -,.C,'))

Actual Phase Shifter

Figure A.I: System for evaluating normalized rms error.

ed(CWT) xp(-wr)for - w,: w < w
9. (e3 ) - exp(-jwr) otherwise;

whereas the sequence {y(n)) denotes the output of the actual phase shifter h(n) with frequency
response

H(e2wT) - [1 + 6(e;')] exp[-ij(e')]. (A.2)
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In Equation A.2 6(e j wT) represents the amplitude deviations relative to the alpass characteristic
and O(ej wT) denotes the actual phase function. Over the passband of H(ewT), the amplitude
deviations would be small and the phase function O(ejwT) would closely approximate fd(eiwT)
for designs that are acceptable.

For a wide-sense stationary input {z(n)), the mean square error cF2 of the output of the
actual phase shifter relative to that of the desired design over the passband -pir 5: wT :5 pr is

ej' = E{[y(n) - yd(n)]2}

(A.3)
SIH(e ",T) - Hd(e "T)I2 IX(eiwT)1 2  (A

where E{u} denotes the expected value of the argument u and IX(eCiT) 2 is the power spectral
density of {:(n)}. The error eF depends predominantly on the filter approximation error
AH = IH(e jwT) - Hd(eiwT) - hence the subscript F on the c. Furthermore, it can be
normalized by the mean square value of {z(n)}, namely

1= E{x(n)) f Pr IX(eiWT )12 &w, (A.4)

to give the normalized rms (root mean square) error

. = C/E. (A.5)

From Equations A.1 and A.2, the filter approximation error AH is given by

AH 2 - (1 + 6)+ 1cos(9d-G). (A.6)

In acceptable designs both 6 and ed - 9 are each very much less than unity. Therefore, a good
upper bound for AH 2 and consequently of erc is

,r.,zs. _< [6 ,,, + 10d - =lI ,.] . (A.7)

This means that the maximum rms error is bounded simply by the square root of the sum of
the squares of the maximum deviations in the amplitude and phase within the passband. For

example, if 6mx = 0.0087 and i[d - 61.. = 0.0043, then cr. . :5 0.0097. Also, if j8d - 81mma
is negligible compared to 6mz, then erms,max 5 6mx
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Appendix B DFT Interpolation

To interpolate between DFT (Discrete Fourier Transform) coefficients, the standard pro-
cedure makes use of the familiar "zero padding" technique. This procedure is implemented as
follows. If the original data sequence is

{z(m)} where m=0,1,...,M-1, (B.1)

then a new time series {V(n)) is defined thus:

O(n) forn=0,1,...,N-1 (B.2)ton- for n --- M,..., N - I S2

where N is normally chosen to be a multiple of M. Next, the N-point DFT of {y(n)} gives the
interpolated DFT coefficients corresponding to the M-point DFT of {x(m)). In fact, if

X(k) DFT {z(m)) k o,1,...,M- 1 (B.3)

Y(k) =DFT {y(n)} = ,1,...,N- I (B.4)

and
N = rM r = integer, (B.5)

then

Y(11 f X({k) for=k (.6)
interpolated values otherwise.

However, if the original sequence {z(m)} has sharp edges (discontinuities) at the two ends
around m = 0 and m = M - 1, the standard zero padding technique would produce erroneous
interpolated DFT coefficients. Since the majority of the impulse responses considered in this
paper has sharp edges, a method has to be developed to give proper DFT coefficients. One
method of doing so with negligible error is presented below.

Let X(k, "o) denote the DFT of {z((m-mo))} where {z((m-mo))} denotes the sequence
{w(m)} that is shifted circularly to the right by mk time samples. Then, in terms of X(k) =

DFT {z(m)},
X(k, mo) = exp(-j2rmok/M) X(k). (B.7)

With this relationship, the procedure for finding interpolated DFT coefficients for a sequence
{w(m)} with sharp edges at the erds is as follows. First, the sequence {z(m)} is shifted
circularly to the right by m0 samples so that the largest (positive and negative) values are
located near the center and the smallest ones near the two ends. This circular shift produces
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the sequence {z((m - mo))) with the DFT coefficients in Equation B.7. Second, the sequence
{x((m - mo))} is augmented with zeros thus:

-.. v(-) = m m , )) forn = 0, 1,-., M - I(s )
for n= M,...,N- 1.

Third, the sequence {y(n)) is shifted circularly to the right by ml samples, where ml = N/2,

to produce the sequence

{z(n)) = {y((n- m))} n = 0,1,...,N- 1. (B.9)

This second shift places the largest values of {z(n)) near the center of the augmented sequence.
Fourth, the DFT of {z(n)) is taken and is given by

Z(l) = exp(-j2rm1l/N) Y(L)

= exp[-j2r(mo + ml)l/N] X(I) I= 0,, ... , N - I. (B.10)

Finally, the interpolated values of the DFT of the original sequence {z(m)) are given by

X(I) = expli21r(mo + mi)l/N Z(1) I = 0,1, ... ,N - 1. (B.11)

The interpolated coefficients in Equation B. 11 have negligible errors and give correct amplitude
and phase values.
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